Kernel’s Parameter Selection for Support Vector Domain Description
نویسندگان
چکیده
Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method. Keywords—Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.
منابع مشابه
Feature Selection of Support Vector Domain Description Using Gaussian Kernel
The performance of the kernel-based learning algorithms, such as support vector domain description, depends heavily on the proper choice of the kernel parameter. It is desirable for the kernel machines to work on the optimal kernel parameter that adapts well to the input data and the pattern classification tasks. In this paper we present a novel algorithm to optimize the Gaussian kernel paramet...
متن کاملPosition regularized Support Vector Domain Description
Support Vector Domain Description (SVDD) is an effective method for describing a set of objects. As a basic tool, several application-oriented extensions have been developed, such as support vector clustering (SVC), SVDD-based k-Means (SVDDk-Means) and support vector based algorithm for clustering data streams (SVStream). Despite its significant success, one inherent drawback is that the descri...
متن کاملEvaluating some Feature Selection Methods for an Improved SVM Classifier
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of features selection methods to reduce the dimens...
متن کاملAn Intelligence-Based Model for Supplier Selection Integrating Data Envelopment Analysis and Support Vector Machine
The importance of supplier selection is nowadays highlighted more than ever as companies have realized that efficient supplier selection can significantly improve the performance of their supply chain. In this paper, an integrated model that applies Data Envelopment Analysis (DEA) and Support Vector Machine (SVM) is developed to select efficient suppliers based on their predicted efficiency sco...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کامل